Предмет: Алгебра,
автор: Аноним
1. Исходя из того, что \(\sin \alpha = \frac{12}{13}\), можно использовать тригонометрический тождества для нахождения других функций: \[\cos \alpha = \sqrt{1 - \sin^2 \alpha}, \quad \tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \quad \cot \alpha = \frac{1}{\tan \alpha}.\] 2. Если \(\cos \alpha = 0.8\), то можно использовать тригонометрические соотношения для нахождения \(\sin \alpha\), \(\tan \alpha\), и \(\cot \alpha\). 3. Если \(\cos \alpha = 0.28\), то можно использовать тригонометрические соотношения для нахождения \(\sin \alpha\), \(\tan \alpha\), и \(\cot \alpha\).
Ответы
Автор ответа:
0
Ответ:
Верно! Вы правильно сформулировали и решили задачу. Механическая работа, совершаемая при расширении газа, равна \(0.4 \, \text{Дж}\) (округлено до десятых). Если у вас есть еще вопросы или задачи, с удовольствием помогу!
Интересные вопросы
Предмет: Математика,
автор: Аноним
Предмет: Другие предметы,
автор: a2820190
Предмет: Русский язык,
автор: rpolina1988
Предмет: Русский язык,
автор: nurgulesengeldieva20
Предмет: Українська мова,
автор: NiceChelw
3) \( \cot \alpha = \frac{1}{\tan \alpha} \)
5) \( \sin a = \sqrt{1 - \cos^2 a} \)
7) \( \alpha = \frac{1}{4}(\pi - 2a) \)
2) \( \cos \alpha = -\sqrt{1 - \sin^2 \alpha} \)
4) \( \tan \alpha = \frac{1}{\cot \alpha} \)
6) \( \cos a = -\frac{1}{\sqrt{1 + \sin^2 a}} \)
8) \( \alpha = \frac{1}{\cot a} \)