Предмет: Математика,
автор: Аноним
докажите что уравнение xy+yx+xy=1 неразрешимо в натуральных числах
Ответы
Автор ответа:
1
От перемены мест сомножителей произведение не меняется, так что ух=ху. Значит,
ху+ху+ху=1
3ху = 1
х=1/(3у)
Или
у=1(3х)
Отсюда видно, что если у натуральное число, то х<1, то есть является ненатуральным, дробным числом. И наоборот, если х натуральное число, то у<1, то есть является ненатуральным, дробным числом.
Следовательно, уравнение неразрешимо в натуральных числах, то есть если один из корней - натуральное число, то второй корень обязательно является дробью.
ху+ху+ху=1
3ху = 1
х=1/(3у)
Или
у=1(3х)
Отсюда видно, что если у натуральное число, то х<1, то есть является ненатуральным, дробным числом. И наоборот, если х натуральное число, то у<1, то есть является ненатуральным, дробным числом.
Следовательно, уравнение неразрешимо в натуральных числах, то есть если один из корней - натуральное число, то второй корень обязательно является дробью.
Интересные вопросы
Предмет: Алгебра,
автор: nadinkarf
Предмет: Математика,
автор: Yana1211111
Предмет: Биология,
автор: Фуфап
Предмет: Математика,
автор: dasatushkanova449
Предмет: История,
автор: anafilej