Предмет: Геометрия,
автор: NastasyaSin
ПОМОГИТЕ ОБЪЯСНИТЬ ПОШАГОВЫЕ ДЕЙСТВИЯ РЕШЕНИЯ ЗАДАЧИ.Основание прямой призмы ABCDA1B1C1D1 - ромб ABCD с углом A, равным 60 градусов, и стороной, равной 2. Найдите высоту призмы, если угол между плоскостями A1BC и ABC равен 30 градусов.
Ответы
Автор ответа:
0
Проведем AE ┴ BC (точка E получается на продолжения СВ:
< ABC =180°- < A =120°) в плоскости ABCD и точка E соединим с точкой A₁,
EC ┴ A₁E (теорема трех перпендикуляров) ⇒<AEA₁ =β=30° будет угол между
плоскостями A₁BC (или A₁BCD₁) и ABC (или ABCD)ю
Из ΔA₁AE: AA₁ =AE*tqα =(AB*sinα)*tqβ =2*sin60°*tq30°=2*( (√3)/2 ) *1/√3 =1.
< ABC =180°- < A =120°) в плоскости ABCD и точка E соединим с точкой A₁,
EC ┴ A₁E (теорема трех перпендикуляров) ⇒<AEA₁ =β=30° будет угол между
плоскостями A₁BC (или A₁BCD₁) и ABC (или ABCD)ю
Из ΔA₁AE: AA₁ =AE*tqα =(AB*sinα)*tqβ =2*sin60°*tq30°=2*( (√3)/2 ) *1/√3 =1.
Интересные вопросы
Предмет: Математика,
автор: vqsilissa
Предмет: Математика,
автор: sashalirik06
Предмет: География,
автор: Gooddness
Предмет: Алгебра,
автор: Beat1es
Предмет: Математика,
автор: дина2406