Предмет: Математика,
автор: ILONA2223
Первый ученик расставил числа 1,2..2015 по кругу и выписал в тетрадь неотрицательные разности всех пар соседних чисел. Второй ученик должен выбрать из этих разностей наименьшую. Ему интересно, какое самое большое число он может получить?
Ответы
Автор ответа:
0
Допустим, это не так. Значит остаток чисел от деления на 3 может быть только 1 или 2.
Следующее число не может иметь такой же остаток в случае прибавления или вычитания 1 или 2, без обнуления остатка, только смена значения с 1 на 2 и наоборот. При увеличении на 2 остаток также увеличивается в 2 раза, и его значение меняется с 1 на 2 или с 2 на 1 (удвоенный остаток 2 равен 4, что аналогично остатку 1). При уменьшении в 2 раза ситуация аналогичная, обратная рассмотренным примерам с умножением.
Мы рассмотрели все возможные случаи. Получается только чередование чисел с остатками ...1, 2, 1, 2... Поскольку число 2015 нечётное, то в конце встречаются два числа с одинаковыми остатками и преобразовать одно число в другое без изменения остатка разрешёнными условием задачи методами невозможно. Налицо противоречие.
Следующее число не может иметь такой же остаток в случае прибавления или вычитания 1 или 2, без обнуления остатка, только смена значения с 1 на 2 и наоборот. При увеличении на 2 остаток также увеличивается в 2 раза, и его значение меняется с 1 на 2 или с 2 на 1 (удвоенный остаток 2 равен 4, что аналогично остатку 1). При уменьшении в 2 раза ситуация аналогичная, обратная рассмотренным примерам с умножением.
Мы рассмотрели все возможные случаи. Получается только чередование чисел с остатками ...1, 2, 1, 2... Поскольку число 2015 нечётное, то в конце встречаются два числа с одинаковыми остатками и преобразовать одно число в другое без изменения остатка разрешёнными условием задачи методами невозможно. Налицо противоречие.
Интересные вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Алгебра,
автор: azikanovabermet
Предмет: Биология,
автор: ak3041904
Предмет: Литература,
автор: alenazelenova19