Предмет: Геометрия,
автор: 98Nyasha98
В треугольнике MKE известно,что MK = ME. На стороне KE отмечены точки F и N так, что точка N лежит между точками F и E, причём угол KMF = углу EMN. Докажите, что угол MFN = углу MNF.
ПОМОГИТЕ ПОЖАЛУЙСТА!
Ответы
Автор ответа:
0
1) Рассмотрим ΔMKF и ΔMEN
- MK=ME (по условию) ⇒ ΔМКЕ - равнобедренный
- ∠К=∠Е (свойство равнобедренного треугольника
- ∠KMF = ∠EMN (по условию)
Следовательно, ΔMKF=ΔMEN
2) ∠MFN - внешний угол вершины F в ΔMKF
∠MNF - внешний угол вершины N в ΔMEN
∠F=∠N (т.к. ΔMKF=ΔMEN из п,2) ⇒
∠MFN=∠MNF (т.к. внешний углы при равных вершинах должны быть равны)
- MK=ME (по условию) ⇒ ΔМКЕ - равнобедренный
- ∠К=∠Е (свойство равнобедренного треугольника
- ∠KMF = ∠EMN (по условию)
Следовательно, ΔMKF=ΔMEN
2) ∠MFN - внешний угол вершины F в ΔMKF
∠MNF - внешний угол вершины N в ΔMEN
∠F=∠N (т.к. ΔMKF=ΔMEN из п,2) ⇒
∠MFN=∠MNF (т.к. внешний углы при равных вершинах должны быть равны)
Интересные вопросы
Предмет: Английский язык,
автор: nastuxxaa1139
Предмет: Математика,
автор: iliaglotov
Предмет: Английский язык,
автор: mixail58
Предмет: История,
автор: умна124