Предмет: Геометрия,
автор: akropol36
дана равнобедренная трапеция с острым углом 60 и большим основанием равным 24 прямая проходящая через вершину острого угла и центр вписанной окружности делит трапецию на четырехугольник и треугольник. Найдите площадь полученного треугольника.
Ответы
Автор ответа:
0
Обозначим трапецию АВСД. Стороны Х и У. Поскольку в трапецию можно вписать окружность-сумма боковых сторон =сумме оснований. Отсюда два уравнения из которых находим Х и У.Далее высоту Н=2R. Поскольку угол АОК=30 градусов а угол АДМ=60 градусов, то треугольник АМД-прямоугольный. О-центр вписанной окружности, но раз ОМ перпендикулярно СД, значит ОМ-радиус. Тогда из равенства треугольников ОКД и ОМД (по катету и гипотенузе) находим МД=12. Затем АМ и окончательный ответ S амд=72 корня из 3.
Интересные вопросы
Предмет: Математика,
автор: rahmetadina2010
Предмет: Литература,
автор: Аноним
Предмет: Геометрия,
автор: helmut228
Предмет: Математика,
автор: Ваня2009
Предмет: География,
автор: Balashova99