Предмет: Геометрия,
автор: korvo2
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 8. Найдите площадь четырехугольника ABMN
Ответы
Автор ответа:
0
Проведем высоту из вершины С.
Scnm=1/2*CE*NM=8 (по условию).
CE*NM=16
Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED.
ABMN - трапеция (по определению), тогда
Sabmn=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
Sabmn=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*16=24
Ответ: Sabmn=24
Scnm=1/2*CE*NM=8 (по условию).
CE*NM=16
Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED.
ABMN - трапеция (по определению), тогда
Sabmn=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
Sabmn=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*16=24
Ответ: Sabmn=24
Автор ответа:
0
MN- средняя линия Δ АВС. MN = 1/2 AC ⇒ AC = 2 ·MN
Пусть высота Δ MNС = h ⇒ S (ΔMNC) = 1/2 ·MN·h
1/2· MN·h = 8 ⇒ MN·h = 16
S (ΔABMN)= (AB+MN)/2· h = (( 2MN + MN ) / 2 )·h = ( 3 MN· h)2=
3/2·(MN·h) = (3 ·16)/2=24
Пусть высота Δ MNС = h ⇒ S (ΔMNC) = 1/2 ·MN·h
1/2· MN·h = 8 ⇒ MN·h = 16
S (ΔABMN)= (AB+MN)/2· h = (( 2MN + MN ) / 2 )·h = ( 3 MN· h)2=
3/2·(MN·h) = (3 ·16)/2=24
Интересные вопросы
Предмет: Русский язык,
автор: 067Milana670
Предмет: Математика,
автор: gumina83
Предмет: Химия,
автор: alisa5555630
Предмет: Литература,
автор: boiarskii
Предмет: Математика,
автор: oreshik82