Предмет: Алгебра,
автор: Hatug
сколько целых решений имеет неравенство: x(x+1)(x+2)(x+3)>=24
Ответы
Автор ответа:
0
[x(x+3)]*(x+1)(x+2)]≥24
(x²+3x)*(x²+3x+2)-24≥0
x²+3x=a
a(a+2)-24≥0
a²+2a-24≥0
a1+a1=-2 U a1*a2=-24
a1=-6⇒x²+3x=-6
x²+3x+6=0
D=9-24=-15 <0 нет решения
a2=4⇒x²+3x=4
x²+3x-4=0
x1+x2=-3 U x1*x2=-4
x1=-4 U x2=1
x∈(-∞;-4] U [1;∞)
Целых решений множество
(x²+3x)*(x²+3x+2)-24≥0
x²+3x=a
a(a+2)-24≥0
a²+2a-24≥0
a1+a1=-2 U a1*a2=-24
a1=-6⇒x²+3x=-6
x²+3x+6=0
D=9-24=-15 <0 нет решения
a2=4⇒x²+3x=4
x²+3x-4=0
x1+x2=-3 U x1*x2=-4
x1=-4 U x2=1
x∈(-∞;-4] U [1;∞)
Целых решений множество
Интересные вопросы
Предмет: Биология,
автор: Leastsq
Предмет: Литература,
автор: tina202044
Предмет: ОБЖ,
автор: belyyyar06
Предмет: Химия,
автор: 79040100360
Предмет: Математика,
автор: ЕвгещЯ