Предмет: Геометрия,
автор: alla3
В ромб вписана окружность радиусом 3,6. Длины диагоналей ромба относятся как 3:4.
а) Найдите сторону ромба
б) Найдите площадь ромба
Ответы
Автор ответа:
0
ОТВЕТ: Сторона =7,5 Площадь = 54.
Решение и рисунок в приложении.
Решение и рисунок в приложении.
Приложения:

Автор ответа:
0
Пусть в ромб АВСД вписана окружность с центром в точке О (это точка пересечения диагоналей).
Обозначим ОВ и ОС (это половины диагоналей) как 3х и 4х.
Тогда сторона ромба по Пифагору равна 5х.
В прямоугольном треугольнике произведение катетов равно произведению гипотенузы на высоту к ней.
3х*4х = 5х*3,6.
12х² = 18х.
Сократим на 6х: 2х = 3, х = 3/2 = 1,5.
Получаем ответ:
а) найдите сторону ромба: ВС = 5х = 5*1,5 = 7,5.
б) найдите площадь: S = 2r*BC = 2*3,6*7,5 = 54.
Обозначим ОВ и ОС (это половины диагоналей) как 3х и 4х.
Тогда сторона ромба по Пифагору равна 5х.
В прямоугольном треугольнике произведение катетов равно произведению гипотенузы на высоту к ней.
3х*4х = 5х*3,6.
12х² = 18х.
Сократим на 6х: 2х = 3, х = 3/2 = 1,5.
Получаем ответ:
а) найдите сторону ромба: ВС = 5х = 5*1,5 = 7,5.
б) найдите площадь: S = 2r*BC = 2*3,6*7,5 = 54.
Интересные вопросы
Предмет: ОБЖ,
автор: bnikitenko572
Предмет: Алгебра,
автор: nastiamariposa
Предмет: Українська мова,
автор: Аноним
Предмет: Математика,
автор: 20MARIA03