Предмет: Геометрия,
автор: Olyaimn
Краткое доказательство признака параллельности плоскостей
Ответы
Автор ответа:
0
Две прямые на плоскости называются параллельными, если они не имеют общих точек.
Две прямые в трехмерном пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
Две прямые в трехмерном пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
Приложения:

Автор ответа:
0
Не увидел :D Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Автор ответа:
0
Пусть α и β - параллельные плоскости, а γ- плоскость, пересекающая их.
Плоскость α пересекается с плоскостью γ по прямой a.
Плоскость β пересекается с плоскостью γ по прямой b.
Линии пересечения a и b лежат в одной плоскости γ и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.
Плоскость α пересекается с плоскостью γ по прямой a.
Плоскость β пересекается с плоскостью γ по прямой b.
Линии пересечения a и b лежат в одной плоскости γ и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.
Автор ответа:
0
Не за что ;)
Интересные вопросы
Предмет: Другие предметы,
автор: dashytowinks
Предмет: Русский язык,
автор: absatarovisa006
Предмет: История,
автор: fhruygrhfyu3354
Предмет: Математика,
автор: mishelelen
Предмет: Литература,
автор: djadi777