Предмет: Обществознание, автор: logovospama

Как воспитывали родителей ваши бабушка и дедушка? Расспросите их. Можно ли сделать вывод о том, что разные поколения воспитывают детей по-разному?

Ответы

Автор ответа: Mari2503
0
Да разные поколения воспитывают детей по-разному.Во первых когда наши родители были детьми страна называлась СССР,были совсем другие законы,правила,а главное была очень жёсткая дисциплина!В то время денег во многих семьях не хватало,а это сказывалась на детях.Они пытались где-то подработать и не успевали учиться.Моя мама рассказала мне всё именно так.

Автор ответа: latenight
0
Очень странный вопрос, лучше конечно у своих спросить, если нет возможности, то придумать. 
Примерный ответ:
Конечно можно, так как разные поколения несут в себе различные тенденции.  Если во времена бабушек и дедушек к воспитанию относились более строго, но в тоже старались привить детям основы нравственности, то поколение молодых родителей чаще  к воспитанию подходят более лояльно, тем самым иногда давая детям неверные жизненные установки
Автор ответа: logovospama
0
Спасибо большое! ♥
Интересные вопросы
Предмет: Алгебра, автор: ssssss1979
f(x)=(х+3)(х+1) Иследовать график функции по алгаритму_
1 Область определения
2. Исследование функции на четность, нечетность и периодичность

3. Нахождение точек пересечения графика функции с осями координат
Точки пересечения с осью ОХ: , где – решение уравнения .
Точки пересечения с осью ОY: .
4. Нахождение промежутков знакопостоянства функции

5. Нахождение производной функции, области определения производной, критических точек

6. Нахождение промежутков возрастания, убывания, точек экстремума и экстремумов
Критические точки функции разбивают область определения функции на промежутки. Для нахождения промежутков возрастания, убывания и точек экстремума нужно определить знак производной на каждом из полученных промежутков. Если производная функции положительна на некотором промежутке I, то функция возрастает на этом промежутке; если производная функции отрицательна на некотором промежутке I, то функция убывает на этом промежутке. Если при переходе через критическую точку производная меняет знак, то данная точка является точкой экстремума.
7. Нахождение промежутков выпуклости функции и точек перегиба
Для нахождения промежутков выпуклости используется вторая производная функции. Точки, в которых вторая производная равна нулю или не существует, разбивают область определения функции на промежутки. Если вторая производная на полученном промежутке положительна, то график функции имеет выпуклость вниз, если – отрицательна, то график функции имеет выпуклость вверх. Если при переходе через точку, в которой вторая производная равна нулю или не существует, вторая производная меняет знак, то данная точка является точкой перегиба.
8. Исследование поведения функции на бесконечности и в окрестности точек разрыва
Для исследования поведения функции в окрестности точки разрыва необходимо вычислить односторонние пределы: и . Если хотя бы один из данных пределов равен бесконечности, то говорят, что прямая – вертикальная асимптота.
При исследовании поведения функции на бесконечности необходимо проверить, не имеет ли график функции наклонных асимптот при и . Для этого нужно вычислить следующие пределы: и . Если оба предела существуют, то – уравнение наклонной асимптоты при . Частный случай наклонной асимптоты при – горизонтальная асимптота. Аналогично ищется наклонная асимптота при .
9. Построение графика (при необходимости нужно найти значения функции в дополнительных точках)