Предмет: Алгебра,
автор: Kokakz
докажите,что сумма кубов двух натуральных чисел,не равных одновременно единице,есть число составное
Ответы
Автор ответа:
0
Дано: n и m - натуральные
n≠1 и m≠1
Доказать: n³+m³ - составное число
Доказательство:
Составное число - число полученное путём произведения двух натуральных чисел, больших единицы.
n³+m³=(n+m)(n²-nm+m²)
По условию, n и m - натуральные числа, не равные единице, следовательно, их сумма является натуральным числом не равным единице.
Посмотрим на вторую скобку: n²+m² - натуральное число, nm - натуральное число, причём n²+m² > mn, т.е. n²+m²-nm - также натуральное число больше единицы.
Получаем, что n³+m³ - является произведением двух натуральных чисел, больших единицы.
Следовательно, n³+m³ - составное число.
Что и требовалось доказать.
n≠1 и m≠1
Доказать: n³+m³ - составное число
Доказательство:
Составное число - число полученное путём произведения двух натуральных чисел, больших единицы.
n³+m³=(n+m)(n²-nm+m²)
По условию, n и m - натуральные числа, не равные единице, следовательно, их сумма является натуральным числом не равным единице.
Посмотрим на вторую скобку: n²+m² - натуральное число, nm - натуральное число, причём n²+m² > mn, т.е. n²+m²-nm - также натуральное число больше единицы.
Получаем, что n³+m³ - является произведением двух натуральных чисел, больших единицы.
Следовательно, n³+m³ - составное число.
Что и требовалось доказать.
Интересные вопросы
Предмет: Математика,
автор: almaevao33
Предмет: Русский язык,
автор: chingis95
Предмет: Русский язык,
автор: nurlihan008
Предмет: Математика,
автор: oksana150385
Предмет: География,
автор: сергейшкольников18