Предмет: Геометрия,
автор: tyrell
99 БАЛЛОВ!!! Помогите решить ДВЕ задачи (ну или хотя бы одну) !!!99 БАЛЛОВ
Приложения:

Ответы
Автор ответа:
0
3. ∠BOA=2∠ADB т.к. ∠ADB - вписанный угол, а ∠AOB - центральный. ∠APB=∠PBC+∠PCB=2∠ADB, т.к. ∠APB - внешний угол треугольника PBC и ∠PBC=∠PCB=∠ADB в силу равнобедренности трапеции. Значит, ∠BOA=∠АPВ, т.е. ABPO - вписанный 4-угольник. (см. рис. 1).
4. Без ограничения общности можно считать, что С лежит между B и Е. Тогда ∠B=∠CAE, т.к. ∠B - вписанный, а ∠CAE - угол между касательной и хордой в точку касания (см. рис 2). ∠EDA=∠B+∠BAD как внешний угол треугольника BAD. ∠EAD=∠CAE+∠CAD, но ∠BAD=∠CAD (AD - биссектриса). Значит ∠EDA=∠EAD, т.е. EAD - равнобедренный и AE=ED.
4. Без ограничения общности можно считать, что С лежит между B и Е. Тогда ∠B=∠CAE, т.к. ∠B - вписанный, а ∠CAE - угол между касательной и хордой в точку касания (см. рис 2). ∠EDA=∠B+∠BAD как внешний угол треугольника BAD. ∠EAD=∠CAE+∠CAD, но ∠BAD=∠CAD (AD - биссектриса). Значит ∠EDA=∠EAD, т.е. EAD - равнобедренный и AE=ED.
Приложения:


Интересные вопросы
Предмет: Алгебра,
автор: yanarakickaya2007
Предмет: Английский язык,
автор: Аноним
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Алгебра,
автор: KoPo2001
Предмет: Физика,
автор: сэлмэзьэ