Предмет: Геометрия,
автор: Аноним
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=33см, BC=11см, а площадь трапеции AEFD относится к площади трапеции EFCB как 27:5
Ответы
Автор ответа:
0
очевидно, что трапеции, образованные пересечением другой трапеции прямой, параллельной данной, подобны(все четыре угла равны).
площади подобных фигур относятся как квадраты их соответствующих линейных размеров. т.е. s(f1)=k^2*s(f2). значит, коэффициент подобия равен sqrt(27/5)=sqrt(5,4). А EF = k*AD=33*sqrt(5,4). В каком виде вам будет представить этот ответ не знаю, ровно как и насколько он верен.
площади подобных фигур относятся как квадраты их соответствующих линейных размеров. т.е. s(f1)=k^2*s(f2). значит, коэффициент подобия равен sqrt(27/5)=sqrt(5,4). А EF = k*AD=33*sqrt(5,4). В каком виде вам будет представить этот ответ не знаю, ровно как и насколько он верен.
Интересные вопросы
Предмет: Химия,
автор: lynevamaria2019
Предмет: Биология,
автор: lukazarnadze2005
Предмет: Математика,
автор: alievagganna99
Предмет: Алгебра,
автор: sover
Предмет: Химия,
автор: Alina15021996