Предмет: Геометрия,
автор: Frezz55
Сторона равностороннего треугольника равна 2√3 . Найдите радиус описанной около этого треугольника окружности.
Ответы
Автор ответа:
0
Центр описанной окружности треугольника лежит в точке пересечения его срединных перпендикуляров. Срединные перпендикуляры равностороннего треугольника - его высоты.
Следовательно, радиус описанной окружности для равностороннего треугольника – точка пересечения его высот. Высоты правильного треугольника еще биссектрисы и медианы, и все они пересекаются в одной точке.
Точка пересечения медиан треугольника ( любого) делит их в отношении 2:1, считая от вершины.
Отсюда: радиус описанной окружности равностороннего треугольника равен 2/3 его высоты.
Все углы равностороннего треугольника равны 60°
h=2√3•sin60°=2√3•√3/2=3⇒
R=3•2/3=2
-------
По т.синусов получим тот же результат.

Следовательно, радиус описанной окружности для равностороннего треугольника – точка пересечения его высот. Высоты правильного треугольника еще биссектрисы и медианы, и все они пересекаются в одной точке.
Точка пересечения медиан треугольника ( любого) делит их в отношении 2:1, считая от вершины.
Отсюда: радиус описанной окружности равностороннего треугольника равен 2/3 его высоты.
Все углы равностороннего треугольника равны 60°
h=2√3•sin60°=2√3•√3/2=3⇒
R=3•2/3=2
-------
По т.синусов получим тот же результат.
Интересные вопросы
Предмет: Математика,
автор: zahidbektairhanov
Предмет: Русский язык,
автор: anastasdybatova145
Предмет: Алгебра,
автор: ivannaolijnik7
Предмет: Информатика,
автор: ukanova2014
Предмет: Физика,
автор: jenya0011