Предмет: Алгебра,
автор: caketea
solve this ..................
Приложения:

Ответы
Автор ответа:
0
1.
Proof:
Let
be a given polynomial function.
Then, by Polynomial remainder theorem,
is a divisor (factor) of
if and only if
.
Hence,

Q.E.D.
2.
Since
is a divisor of
, there is exists
such that
.
Hence,
.
Therefore,

Now, let's find the roots of g(x):

Hence,
are solutions of f(x).
Proof:
Let
Then, by Polynomial remainder theorem,
Hence,
Q.E.D.
2.
Since
Hence,
Therefore,
Now, let's find the roots of g(x):
Hence,
caketea:
WTF! i didn't understand a thing
Интересные вопросы
Предмет: Математика,
автор: novikovamargarita324
Предмет: Физика,
автор: ghjmord
Предмет: География,
автор: vladdorosuk09
Предмет: Алгебра,
автор: matveydenisov04
Предмет: Математика,
автор: nikshishka07