Предмет: Физика,
автор: mariamorozova3787
Из среды с показателем преломления n(0) в неоднородную среду с показателем преломления n=n(0)√(1-γ/H) под углом φ(0) падает луч света. На какую максимальную глубину сможет проникнуть луч? n(0)=1,4, H=20 м , φ(0)=30°.
Ответы
Автор ответа:
0
Для того, чтобы найти траекторию луча, обычно решают дифференциальное уравнение следующего вида

Это уравнение для луча в том случае, когда параметром выступает длина кривой. В нашем случае плоскослоистой среды мы перейдем к другому параметру - глубине погружения y (отсчитываемой от 0 в положительную сторону), тогда несложно сообразить, что на этапе погружения луча в среду

Где θ - острый угол между касательной к лучу и поверхностью среды. Отметим также, что вектор dR/dl по своей математической природе как раз и является касательным вектором единичной длины.
Поэтому перепишем уравнение

Отсюда мы получаем важное следствие

-------
Отступление: если мы находимся в рамках математики попроще, то последнее равенство, или даже закон сохранения можно объяснить качественно. Суть в том, что среда совершенно однородна вдоль оси X, направленной вдоль ее поверхности, поэтому проекция импульса фотона (волнового вектора электромагнитной волны) на ось Х должна сохраняться. Эта проекция равна nω/c*cos(θ), где ω - частота волны, c-скорость света в вакууме. Сокращая на ω/c получим тот же результат: неизменность произведения n*cos(θ)
--------------
Нас интересует случай, когда θ=0 и косинус равен 1, выразим отсюда глубину погружения

Отметим, что из-за совпадения показателей преломления на границе раздела однородной и неоднородной сред, дополнительного преломления не будет.
Это уравнение для луча в том случае, когда параметром выступает длина кривой. В нашем случае плоскослоистой среды мы перейдем к другому параметру - глубине погружения y (отсчитываемой от 0 в положительную сторону), тогда несложно сообразить, что на этапе погружения луча в среду
Где θ - острый угол между касательной к лучу и поверхностью среды. Отметим также, что вектор dR/dl по своей математической природе как раз и является касательным вектором единичной длины.
Поэтому перепишем уравнение
Отсюда мы получаем важное следствие
-------
Отступление: если мы находимся в рамках математики попроще, то последнее равенство, или даже закон сохранения можно объяснить качественно. Суть в том, что среда совершенно однородна вдоль оси X, направленной вдоль ее поверхности, поэтому проекция импульса фотона (волнового вектора электромагнитной волны) на ось Х должна сохраняться. Эта проекция равна nω/c*cos(θ), где ω - частота волны, c-скорость света в вакууме. Сокращая на ω/c получим тот же результат: неизменность произведения n*cos(θ)
--------------
Нас интересует случай, когда θ=0 и косинус равен 1, выразим отсюда глубину погружения
Отметим, что из-за совпадения показателей преломления на границе раздела однородной и неоднородной сред, дополнительного преломления не будет.
Автор ответа:
0
В решении использовалось другое обозначение для угла луча с поверхностью, не фи, а тета. Сути это не меняет
Автор ответа:
0
Как впоследствии выяснилось, меняет. Это разные углы. Тета - это не угол между лучом и нормалью, поэтому хорошо, что мы придумали для него специальное обозначение. Нам в конце пришлось делать дополнительное преобразование от начального фи к начальному тета
Интересные вопросы
Предмет: История,
автор: kakk78758
Предмет: Математика,
автор: aalua7
Предмет: Математика,
автор: masamaslova33
Предмет: Химия,
автор: S1fiyka