Предмет: Геометрия,
автор: prostdddo
В параллелограмме ABCD точка M — середина стороны BC. Известно, что AM=MD. Докажите, что данный параллелограмм — прямоугольник.
Ответы
Автор ответа:
0
рассмотрим ∆АВМ и ∆DCM
BM=CM, AM=CD(по условию),
АВ=CD(противоположные стороны параллелограмма)
∆ABM=∆DCM(по 3 признаку)
значит угл.В=угл.С
тк АВ//CD, то углы В и С односторонние, а значит B+C=180°
тогда С=В=180:2=90°
A=C, В=D(противоположные углы параллелограмма)
А=B=C=D=90°
ABCD – прямоугольник.
чтд
BM=CM, AM=CD(по условию),
АВ=CD(противоположные стороны параллелограмма)
∆ABM=∆DCM(по 3 признаку)
значит угл.В=угл.С
тк АВ//CD, то углы В и С односторонние, а значит B+C=180°
тогда С=В=180:2=90°
A=C, В=D(противоположные углы параллелограмма)
А=B=C=D=90°
ABCD – прямоугольник.
чтд
Интересные вопросы
Предмет: Французский язык,
автор: anastasiastrela
Предмет: Математика,
автор: okazaoka999
Предмет: Қазақ тiлi,
автор: tungusbajbekzan
Предмет: Геометрия,
автор: gurumihail
Предмет: Математика,
автор: oldfidsof