Предмет: Алгебра, автор: ansys222

Необходимо разложить многочлен на множители

Приложения:

Ответы

Автор ответа: nafanya2014
0
Многочлен 4-ой степени первый коэффициент которого 2(!) и последний 2 (!) можно представить в виде многочленов второй степени так
2y⁴+y³+4y²-y+2=(y²+Ay+1)*(2y²+Cy+2)    (1)
или
2y⁴+y³+4y²-y+2=(y²+Ay+2)*(2y²+Cy+1)    (2)

Раскрываем скобки:
2y⁴+y³+4y²-y+2=2y⁴+(2A+C)y³+(4+AC)y²+(2A+C)y+2
Два многочлена равны, если у них одинаковые степени и коэффициенты при одинаковых степенях переменной совпадают.
2A+C=1
4+AC=4
2A+C=-1
Первая и третья строка противоречат друг другу, значит разложение (1) невозможно


2y⁴+y³+4y²-y+2=(y²+Ay+2)*(2y²+Cy+1)    (2)

Раскрываем скобки:
2y⁴+y³+4y²-y+2=2y⁴+(2A+C)y³+(4+AC+1)y²+(2С+А)y+2
Два многочлена равны, если у них одинаковые степени и коэффициенты при одинаковых степенях переменной совпадают.
2A+C=1  ⇒  C=1-2A
4+AC+1=4
2С+A=-1   ⇒C= (-1-A)/2

1-2A=(-1-A)/2
2-4A=-1-A
3=3A
A=1
C=-1
О т в е т. 
2y⁴+y³+4y²-y+2=(y²+y+2)*(2y²-y+1)   
Автор ответа: ansys222
0
решение конечно нетривиальное, а оно сойдет на уровень 10 класса ?
Автор ответа: nafanya2014
0
конечно, другого решения просто нет. Данный многочлен не имеет действительных корней, потому раскладывается на два квадратных трехчлена с отрицательными дискриминанатми
Интересные вопросы
Предмет: Химия, автор: pupgtopchuk
Предмет: Русский язык, автор: sanchospanvhos2011