Предмет: Математика,
автор: FrenkieMC
В младшей группе детского сада есть две маленькие ёлки и пять детей. Воспитатели хотят разделить детей на два хоровода вокруг каждой из елок, причём в каждом хороводе должен быть хотя бы один ребёнок. При этом воспитатели различают детей, но не различают елок: два таких разбиения на хороводы считаются одинаковыми, если одно из другого можно получить, поменяв елки (вместе с соответствующими хороводами) местами и повращав каждый из хороводов вокруг своей елки. Сколькими способами можно разбить детей на хороводы?
Ответы
Автор ответа:
0
задача состоит в том, чтобы подсчитать сколькими способами можно разбить 5 детей на две группы, всего вариантов групп 2: (1 и 4, 2 и 3)
так вот надо посчитать сколько вариантов разбить на группы 1 и 4, и сколько вариантов разбить на 2 и 3
1) 1 и 4:
всего 5 вариантов, т.к. одного ребенка можно отобрать 5-ю вариантами, а остальные 4 автоматически попадают во вторую группу
2) 2 и 3
одного ребенка способов отобрать 5, второго - 4, всего 4 * 5 = 20 способов
Значит всего способов:
5 + 20 = 25
Ответ: 25 способов
так вот надо посчитать сколько вариантов разбить на группы 1 и 4, и сколько вариантов разбить на 2 и 3
1) 1 и 4:
всего 5 вариантов, т.к. одного ребенка можно отобрать 5-ю вариантами, а остальные 4 автоматически попадают во вторую группу
2) 2 и 3
одного ребенка способов отобрать 5, второго - 4, всего 4 * 5 = 20 способов
Значит всего способов:
5 + 20 = 25
Ответ: 25 способов
Интересные вопросы
Предмет: Биология,
автор: neiboilas32
Предмет: Українська мова,
автор: galinapilipcuk767
Предмет: Математика,
автор: Jzboy
Предмет: Математика,
автор: coolziyada84
Предмет: Математика,
автор: daisywheell