Предмет: Геометрия,
автор: MariSar
Помогите решить задачу. Даю 50 баллов!!!
Приложения:

Ответы
Автор ответа:
1
Четырехугольник ABCD вписан в окружность.
Дано: AB:CD = 1:2 и BD:AC = 2:3
Найти: AD:BC
ΔABO и ΔCDO
∠AOB = ∠DOC - вертикальные углы
∠BAC = ∠BDC - вписанные углы опираются на одну дугу CB
⇒ ΔABO ~ ΔCDO по двум равным углам.
AB : CD = 1 : 2 ⇒

⇒ OD = 2AO; OC = 2BO
AC = AO + OC = AO + 2BO
BD = BO + OD = BO + 2AO
По условию BD : AC = 2 : 3 ⇒

3(BO + 2AO) = 2(AO + 2BO)
3BO + 6AO = 2AO + 4BO
4AO = BO ⇒ AO : BO = 1 : 4
ΔAOD и ΔBOC
∠AOD = ∠BOC - вертикальные углы
∠CBD = ∠DAC - вписанные углы опираются на одну дугу CD ⇒
ΔAOD ~ ΔBOC по двум равным углам ⇒

Ответ: AD : BC = 1 : 4
Дано: AB:CD = 1:2 и BD:AC = 2:3
Найти: AD:BC
ΔABO и ΔCDO
∠AOB = ∠DOC - вертикальные углы
∠BAC = ∠BDC - вписанные углы опираются на одну дугу CB
⇒ ΔABO ~ ΔCDO по двум равным углам.
AB : CD = 1 : 2 ⇒
⇒ OD = 2AO; OC = 2BO
AC = AO + OC = AO + 2BO
BD = BO + OD = BO + 2AO
По условию BD : AC = 2 : 3 ⇒
3(BO + 2AO) = 2(AO + 2BO)
3BO + 6AO = 2AO + 4BO
4AO = BO ⇒ AO : BO = 1 : 4
ΔAOD и ΔBOC
∠AOD = ∠BOC - вертикальные углы
∠CBD = ∠DAC - вписанные углы опираются на одну дугу CD ⇒
ΔAOD ~ ΔBOC по двум равным углам ⇒
Ответ: AD : BC = 1 : 4
Приложения:

Интересные вопросы
Предмет: Английский язык,
автор: iva743113
Предмет: Математика,
автор: mihailbulgakov783
Предмет: Геометрия,
автор: ziganshinaleksyi
Предмет: Математика,
автор: Nãstюlяg
Предмет: Математика,
автор: culakovagalka