Предмет: Геометрия, автор: malofeevs

Точка на гипотенузе прямоугольного треугольника, равноудаленная от катетов, делит ее на отрезки 30 и 40см. Найти периметр прямоугольника.

Ответы

Автор ответа: dnepr1
2
Из заданной точки на гипотенузе проведём отрезки, перпендикулярные катетам. Получим 2 подобных прямоугольных треугольника с гипотенузами 30 и 40 и квадрат со стороной "х".
Треугольник с гипотенузой 30 имеет один катет "х", а второй обозначим "у".
Треугольник с гипотенузой 40 имеет один катет "х", а второй по подобию равен (4/3)х.
Найдём соотношение между х и у из подобия треугольников.
х/у = ((4/3)х)/х. Отсюда х/у = 4/3 или у = 3х/4.
По Пифагору х² + у² = 30².
Заменим у на 3х/4:
х² + (9х²)/16 = 30²,
25х² = 30²*16 или 5²*х² = 30²*4².
Отсюда находим х = 30*4/5 = 120/5 = 24.
Тогда у = 3*24/4 = 18.
Находим катеты:
один равен 24 + 18 = 42, второй 24 + 4*24/3 = 24 + 32 = 56.

Получаем ответ: периметр равен 42 + 56 +70 = 168.


Интересные вопросы
Предмет: Математика, автор: 6h2mgqqtyr