Предмет: Математика, автор: Sergey02442

найти производную сложной функции y=tg^3(x)/(9(m^2+n^2))

Ответы

Автор ответа: Indentuum
0
y = tg³(x) / (9(m^2 + n^2))
m, n - const
y' = tg²(x)/(3(m^2 + n^2)cos²(x))
Автор ответа: NNNLLL54
0
y=\frac{tg^3x}{9(m^2+n^2)}\\\\y'= \frac{1}{9(m^2+n^2)}\cdot 3tg^2x\cdot \frac{1}{cos^2x}=\frac{tg^2x}{3(m^2+n^2)\cdot cos^2x}
Интересные вопросы
Предмет: Алгебра, автор: annieEl