Предмет: Алгебра,
автор: sia19
Найдите угол наклона касательной к графику функции y=3-4/x в точке с абсциссой x0=2
sia19:
Помогитеее
Ответы
Автор ответа:
2
Будем считать, что дана функция y = 3 - (4/x) и точка с абсциссой x0 = 2.
Находим производную заданной функции.
y' = 4/x².
y'(2)= 4/4 = 1.
Значение функции в точке х = 2:
у(2) = 3-(4/2) = 3 - 2 = 1.
Уравнение касательной в точке х = 2:
у = 1(х - 2) + 1 = х - 2 + 1 = у - 1.
Ответ: тангенс угла наклона касательной равен производной в заданной точке. tgα = 1. α = 45°.
Находим производную заданной функции.
y' = 4/x².
y'(2)= 4/4 = 1.
Значение функции в точке х = 2:
у(2) = 3-(4/2) = 3 - 2 = 1.
Уравнение касательной в точке х = 2:
у = 1(х - 2) + 1 = х - 2 + 1 = у - 1.
Ответ: тангенс угла наклона касательной равен производной в заданной точке. tgα = 1. α = 45°.
Интересные вопросы
Предмет: Математика,
автор: MOTGROMEMES
Предмет: Русский язык,
автор: frksy8k5dh
Предмет: Математика,
автор: sogonov54
Предмет: Математика,
автор: ilonadanya
Предмет: Биология,
автор: RikaMini