Предмет: Математика, автор: Tomika13

100БАЛЛОВ ПОМОГИТЕ ПОЖАЛУЙСТАА

!!!С 6-ОГО ЗАДАНИЯ !!!!

Приложения:

Ответы

Автор ответа: LessonAssistant
1

Ответ:

6. x = 5.

7. x₁ = 1, x₂ = 5.

8. x = 1.

9. x ∉ R.

10. x ∉ ∅.

11. x = 1.

12. x = 4.

Пошаговое объяснение:

6. \sqrt{x+20} - \sqrt{x - 1} = 3

\sqrt{x+20} = 3 + \sqrt{x - 1}

x + 20 = 9 + 6\sqrt{x- 1} + x - 1

20 = 8 + 6\sqrt{x- 1}

-6\sqrt{x- 1} = 8 -20

-6\sqrt{x- 1} = -12

\sqrt{x- 1} = 2

x - 1 = 4

x = 5

Проверка:

\sqrt{5 + 20} - \sqrt{5 - 1} = 3

3 = 3.

7.  \sqrt{2x - 1} - \sqrt{x - 1} = 1  

\sqrt{2x - 1} = 1 + \sqrt{x - 1}  

2x - 1 = 1 + 2\sqrt{x-1} + x - 1  

-2\sqrt{x-1} = 1 + x - 2x  

-2\sqrt{x-1} = 1 - x  

4 (x - 1) = 1 - 2x + x^{2}  

4(x-1)-(1-x)^2=0  

4(x-1)-(-(x-1))^2 = 0  

4(x-1)-(x-1)^2=0

(x - 1) * (4 - 1 (x - 1)) = 0

(x - 1) * (4 - x + 1) = 0

(x - 1) * (5 - x) = 0

\left \{ {{x-1 = 0} \atop {5 - x = 0}} \right.  \left \{ {x = 1} \atop {x = 5}} \right.

\left \{ {{\sqrt{2 * 1 - 1} - \sqrt{1 -1} = 1} \atop {\sqrt{2 * 5 - 1} - \sqrt{5 -1} = 1}} \right.

\left \{ {{1 = 1} \atop {1 = 1}} \right.  

\left \{ {{x = 1} \atop {x=5}} \right.

x₁ = 1, x₂ = 5

8. \sqrt {5x + 20} - \sqrt {x + 8} = 2

\sqrt {5x + 20} = 2 + \sqrt {x + 8}

5x + 20 = 4 + 4\sqrt {x+8} + x + 8

-4\sqrt {x+8} = 12 + x - 5x - 20

-4\sqrt {x+8} = -8 - 4x

\sqrt {x+8} = 2 + x

x + 8 = 4 + 4x + x^2

x + 8 -4 -4x-x^2 = 0

-3x+4-x^2=0

-x^2-3x+4=0

x^2+3x -4 = 0

D = b² - 4ac = 9 + 16 = 25 (\sqrt{25}=5)

x₁ =  \frac{-b + \sqrt{D}}{2a} = \frac{-3+5}{2} = 1

x₂ =  \frac{-b - \sqrt{D}}{2a} = \frac{-3-5}{2} = -4

\left \{ {{\sqrt{5*1 + 20} - \sqrt{1+8}=2} \atop {{\sqrt{5*(-4) + 20} - \sqrt{-4+8}=2}}} \right. \left \{ {{\sqrt{2=2}} \atop {-2=2}} \right. \left \{ {{x=1} \atop {x\neq -4}} \right.

x = 1.

9. 3\sqrt{4-x}+\sqrt{5+x}=30

3\sqrt{4-x}= 30 -\sqrt{5+x}

9(4-x)=900-60\sqrt{5+x} + 5 +x

36-9x=905-60\sqrt{5+x}+x

60\sqrt{5+x}=905+x-36+9x

60\sqrt{5+x}=869+10x

3600(5+x)=869^2+17380x+100x^2

18000+3600x=869^2+17380x-100x^2

18000+3600x - 869^2-17380x-100x^2=0

18000-13780x-869^2-100x^2=0

-100x^2-13780x+18000-869^2=0

100x^2 + 13780x - 18000+869^2=0

x = \frac{-13780 +- \sqrt{13780^2-4*100(-18000+869^2}}{2*100}  

x = \frac{-13780 +- \sqrt{13780^2-400(-18000+869^2}}{200}

x ∈ R

10.  \sqrt{1-x} + \sqrt{1+x} = 1

1-x+2\sqrt{(1-x)*(1+x)} + 1 + x = 1  

2\sqrt{1-x^2} + 1 - 0

x ∈ ∅

11.   \sqrt{x+1} + \sqrt{x-1}=\sqrt{3x-1}  

 x+1+2\sqrt{(x+1)*(x-1)} + x -1 = 3x-1  

 x+1+2\sqrt{x^2-1} +x = 3x  

 2x + 1 + 2\sqrt{x^2-1} - 3x  

 2\sqrt{x^2-1} = 3x - 2x - 1  

 2\sqrt{x^2-1} = x - 1  

 4(x^2-1)=x^2-2x+1  

 4x^2-4=x^2-2x+1  

 4x^2-4-x^2+2x-1=0  

 3x^2-5+2x=0  

 3x^2+2x-5=0  

D = b² - 4ac = 4 + 60 = 64 (\sqrt{64}=8)

x₁ = \frac{-b+\sqrt{D} }{2a} = \frac{-2+8}{6} = 1  [/tex}</p><p>x₂ = [tex]\frac{-b-\sqrt{D} }{2a} = \frac{-2-8}{6} = \frac{5}{3} [/tex}</p><p>[tex]\left \{ {\sqrt{1+1}+\sqrt{1-1}=\sqrt{3*1-1}} \atop {\sqrt{-\frac{5}{3}+1}}}+\sqrt{-\frac{5}{3} - 1} = \sqrt{3*(-\frac{5}{3}) -1} \right. \left \{ {{1,41421=1,41421} \atop {\sqrt{-\frac{2}{3}}}+\sqrt{-\frac{5}{3} - 1} = \sqrt{3*(-\frac{5}{3}) -1}} \right. \left \{ {{x=1} \atop {x\neq -\frac{5}{3}}} \right.

12. \sqrt{2x+1} + \sqrt{2x-4}=\sqrt{8x-7}

2x+1+2\sqrt{(2x+1)*(2x-4)}+2x-4=8x-7

2x+1+2\sqrt{4x^2-8x+2x-4}+2x-4=8x-7

4x-3+2\sqrt{4x^2-6x-4}=8x-7

2\sqrt{4x^2-6x-4} = 8x-7-4x+3

2\sqrt{4x^2-6x-4}=4x-4

\sqrt{4x^2-6x-4}=2x-2

4x^2-6x-4=(2x-2)^2

4x^2-6x-4=4x^2-8x+4

-6x-4=-8x+4

-6x+8x=4+4

2x=9

x=4

Проверка:

\sqrt{2*4+1}+\sqrt{2*4-4}=\sqrt{8*4-7}

5=5


Tomika13: спасибо большое
Tomika13: а почему в 6 заднии 9+6?
Tomika13: откуда 6, можете объснить, пожалуйста
Tomika13: объяснить
LessonAssistant: Есть формула - (a+b)^2 = a^2+2ab+b^2
Интересные вопросы