Предмет: Геометрия,
автор: Тата95
сторона основания правильной четырехугольной призмы равна -а, боковое ребро-2а. Найдите площадь диагонального сечения призмы.
Ответы
Автор ответа:
0
Правильная призма — это прямая призма, основанием которой является правильный многоугольник (в нашем случае - квадрат). Боковые грани правильной призмы — равные прямоугольники (в нашем случае стороны этих прямоугольников равны а и 2а). Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник со сторонами, равными высоте призмы (2а) и диагонали основания (в нашем случае а√2, так как по Пифагору d=√(a²+a²)).
Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².
Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².
Интересные вопросы
Предмет: Українська мова,
автор: alexandr281p
Предмет: Українська мова,
автор: soffikkooo
Предмет: Геометрия,
автор: stimex11nov
Предмет: Литература,
автор: NaTuLiK2000
Предмет: Химия,
автор: ЯнаАбрамова