Предмет: Алгебра,
автор: ilyaryabin
Решите уравнение:
cos X - 2sin X= | cosX |
Ответы
Автор ответа:
0
Ответ:1)сosx<0⇒x∈(π/2+2πn,3π/2+2πn)
-cosx=cosx-2sinx
2sinx-2cosx=0/cosx
2tgx-2=0
tgx=1
x=π/4+πn +x∈(π/2+2πn,3π/2+2πn)
х=5π/4+2πn,n∈z
2)cosx≥0⇒x∈[-π/2+2πn;π/2+2πn,n∈z]
cosx=cosx-2sinx
sinx=0
x=πn +x∈[-π/2+2πn;π/2+2πn,n∈z]
x=2πn,n∈z
Объяснение:
Вроде так но я решил вот так |cosx|=cosx-2sinx
Интересные вопросы
Предмет: Химия,
автор: ZloyToxaAae
Предмет: Английский язык,
автор: Ната015
Предмет: Геометрия,
автор: mari10982mari
Предмет: Математика,
автор: Ксюша8910