Предмет: Алгебра, автор: sofipolishchuk2

найти дискриминант и корни
119(3,4,5,6)
120(1,2,4)
125
срочно~

Приложения:

Ответы

Автор ответа: wsaspo
1

Ответ:

119. \\ 3)10 {x}^{2}  - 9x + 2 = 0 \\ d =  {b}^{2}  - 4ac = 81  - 80 = 1 \\ x1 =  \frac{9 - 1}{2 \times 10} = 0.4 \\ x2 =  \frac{9 + 1}{2 \times 10}   = 0.5

4) \: 21 {x}^{2}  - 2x - 3 = 0 \\ d = 4  + 252 =  \sqrt{256}  = 16 \\ x1 =  \frac{2 - 16}{2 \times 21}  =  \frac{ - 14}{42}  =  -  \frac{1}{3}  \\ x2 =  \frac{2 + 16}{42}  =  \frac{3}{7}

5) \:  {x}^{2}  + 8x - 13 = 0 \\ d = 64 + 52 =  \sqrt{116}  = 10.7 \\ x1 =  \frac{ - 8 - 10.7}{2}  =  - 9.35 \\ x2 =  \frac{ - 8 + 10.7}{2}  = 1.35

6) \: 2 {x}^{2}  - 4x - 17 = 0 \\ d = 16 + 136 =  \sqrt{152}  = 12.3 \\ x1 =   \frac{4 - 12.3}{4}  =  - 2.075 \\ x2 =  \frac{4 + 12.3}{4}  = 4.075

120. \\ 1) \: 3 {x}^{2}  - 12x + 2x - 8 = 5 \\ 3 {x}^{2}  - 10x - 13 = 0 \\ d = 100 + 156 =  \sqrt{256}  = 16 \\ x1 =  \frac{10 - 16}{6}  =  - 1 \\ x2 =  \frac{10 + 16}{6}  =  4.3= 4 \times \frac{1}{3}

2) \:  {x}^{2}  - 2x + x - 2 - 4 {x}^{2}  - 20x + 3x + 15 =  {x}^{2}  - 9x \\  - 4 {x}^{2}    - 9x + 13 = 0 \:  \times ( - 1) \\ 4 {x}^{2}  + 9x - 13 = 0 \\ d = 81 + 208 =   \sqrt{289}  = 17 \\ x1 =  \frac{ - 9 - 17}{8}  =  - 3.25 \\ x2 =  \frac{ - 9 + 17}{8}  = 1

4) \: 27 {x}^{3 }  + 1 - 27 {x}^{3}  + 18 {x}^{2}  - 6x + 4 = 16 {x}^{2}  + 1 \\ 2 {x}^{2}  - 6x - 4 = 0 \:  \:  \div 2 \\  {x}^{2}  - 3x - 2 = 0 \\ d = 9 + 8 =  \sqrt{17}  = 4.1 \\ x1 =  \frac{3 + 4.1}{2}  = 3.55 \\ x2 =  \frac{3 - 4.1}{2}  =  - 0.55


sofipolishchuk2: спасибо огромное!
Интересные вопросы