Предмет: Геометрия,
автор: mosora06
Основания равнобокой трапеции равны 10 см и 40 см. Найдите радиус окружности, вписанной в эту трапецию. Ответ дайте в сантиметрах.
Приложения:

Ответы
Автор ответа:
6
Ответ:
10 см
Объяснение:
Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру.)
В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.
10+40=50 - сумма боковых сторон
50:2=25 - боковая сторона.
Опустим из тупого угла высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой 13, катетом, равным полуразности оснований и равным
(40-10) : 2 = 15, и вторым катетом - высотой трапеции.
По теореме Пифагора диаметр окружности равен
√ (25²-15²) = 20 см
Радиус равен половине диаметра
20:2=10 см
Ответ: радиус вписанной окружности в трапецию равен 10 см
Интересные вопросы
Предмет: Английский язык,
автор: aaaa3
Предмет: Математика,
автор: gid73
Предмет: История,
автор: beginnerN7
Предмет: Математика,
автор: viktoriainbox1
Предмет: Геометрия,
автор: MrsMaRmelaDka1