Предмет: Математика,
автор: MYDAnyaK
второй и пятый члены геометрической прогрессии равны 25,5 и 688,5. Найти члены прогрессии, заключенные между ними
Ответы
Автор ответа:
0
Геометрическая прогрессия это последовательность чисел где каждое следующее получается из предыдущего умножением на постоянное число (q) называемое знаменателем.
формула для вычисления n-го члена геометрической прогрессии:
a(n) = a1q^(n − 1)
т.к. у нас в прогрессии даны 2-й и 5-й члены, то заменяем (n − 1) на (n − 2)
q^(n − 2)=a(n)/а1
q=корень степени (n − 2) из [a(n)/а1]
q=корень степени (5 − 2) из [688,5/25,5] =корень степени (3) из [27] = 3
Проверяем:
25,5 - 2-й член прогрессии
25,5*3=76,5 - 3-й член прогрессии
76,5*3=229,5 - 4-й член прогрессии
229,5*3=688,5 - 5-й член прогрессии
Ответ: 76,5 - 3-й член прогрессии; 229,5 - 4-й член прогрессии.
Интересные вопросы
Предмет: Алгебра,
автор: krch2018
Предмет: Русский язык,
автор: maria22060964
Предмет: Литература,
автор: dark223233
Предмет: Математика,
автор: Арис
Предмет: Физика,
автор: slavuk28