Предмет: Алгебра,
автор: rizii
|cosx|=cosx-2sinx
Ответы
Автор ответа:
0
1)сosx<0⇒x∈(π/2+2πn,3π/2+2πn)
-cosx=cosx-2sinx
2sinx-2cosx=0/cosx
2tgx-2=0
tgx=1
x=π/4+πn +x∈(π/2+2πn,3π/2+2πn)
х=5π/4+2πn,n∈z
2)cosx≥0⇒x∈[-π/2+2πn;π/2+2πn,n∈z]
cosx=cosx-2sinx
sinx=0
x=πn +x∈[-π/2+2πn;π/2+2πn,n∈z]
x=2πn,n∈z
-cosx=cosx-2sinx
2sinx-2cosx=0/cosx
2tgx-2=0
tgx=1
x=π/4+πn +x∈(π/2+2πn,3π/2+2πn)
х=5π/4+2πn,n∈z
2)cosx≥0⇒x∈[-π/2+2πn;π/2+2πn,n∈z]
cosx=cosx-2sinx
sinx=0
x=πn +x∈[-π/2+2πn;π/2+2πn,n∈z]
x=2πn,n∈z
Интересные вопросы
Предмет: Русский язык,
автор: nazgulandeneeva
Предмет: Қазақ тiлi,
автор: street8
Предмет: История,
автор: ded123681
Предмет: Математика,
автор: Irina19796
Предмет: Химия,
автор: GreyPark