Предмет: Алгебра, автор: Аноним

ХЕЛП ПЛИЗ
Знайдіть похідну(найдите производную). С объяснением и желательно с рисунком.
f(x) =2sinx+cos2x​

Ответы

Автор ответа: bena20193
1

Ответ:

Объяснение:

f(x)' =(2sinx+cos2x​)=

производная суммы = сумме производных

=(2sinx)'+(cos2x​)'

1) первое слагаемое

(2sinx)'=

постоянный множитель можно вынести за знак производной

=2(sinx)'=

производная синуса (sinx)'=cosx

=2cosx

2) второе слагаемое это сложная функция  решается по формуле

f'(g(x))=f'(g)*g'(x)

(cos2x​)' =-sin2x*(2x)'=-2sin2x

теперь все вместе

f(x)' =(2sinx+cos2x​)=(2sinx)'+(cos2x​)'=2cosx-sin2x*(2x)'=2cosx-2sin2x

Интересные вопросы
Предмет: Қазақ тiлi, автор: doshhanovelzha