Предмет: Алгебра,
автор: fd5retgyth
От конца А треугольника АВС до стороны ВС вырезают сечение AD.Если BD:BC=7:10, найдите отношение площадей, делимых сечением AD из треугольника.
Ответы
Автор ответа:
0
Ответ: S(ΔABD):S(ΔADC)=7/3
Объяснение:
Итак нужно найти отношение площадей S(ΔABD): S(ΔADC)=?
Заметим, что у этих треугольников одна и та же высота АН, но разные основания BD и DC.
По формуле площади треугольника
S(ΔABD)= ВD*AH/2 S(ΔADC)= DC*AH/2
=> S(ΔABD):S(ΔADC) = (ВD*AH/2) :(DC*AH/2) =BD:DC
Пусть BD=7x => BC=10x => DC=10x-7x=3x
=> S(ΔABD):S(ΔADC) = BD:DC=7x/(3x)=7/3
Интересные вопросы
Предмет: Математика,
автор: kgogo2747
Предмет: Литература,
автор: Nika88886
Предмет: Химия,
автор: suhovap28
Предмет: Русский язык,
автор: 7979leha
Предмет: Геометрия,
автор: edilzhan21