Предмет: Алгебра,
автор: Алексей334
(3x^2-4)^2-4(bx^2-4)-5=0 сколько будет
Ответы
Автор ответа:
0
если b = 3 ,то есть решение
(3x^2-4)^2-4(3x^2-4)-5=0
заменяем выражение (3x^2-4) на переменную y
y^2 - 4y -5 =0
Дискриминант
D = (-4)^2 -4*1*(-5) = 36 ; √D = -/+ 6
y1 = 1/2 (4 -6) = -1
y2 = 1/2 (4 +6) = 5
обратная замена переменной на выражение
y1 = (3x^2-4) = -1
3x^2-4 = -1
3x^2 = 3
x^2 = 1;
x = -/+1
x1 = -1
x2 = 1
y2 = (3x^2-4) = 5
3x^2-4 = 5
3x^2 = 9
x^2 = 3;
x = -/+ √3
x3 = - √3
x4 = √3
ответ x = {- √3; -1; 1; √3}
(3x^2-4)^2-4(3x^2-4)-5=0
заменяем выражение (3x^2-4) на переменную y
y^2 - 4y -5 =0
Дискриминант
D = (-4)^2 -4*1*(-5) = 36 ; √D = -/+ 6
y1 = 1/2 (4 -6) = -1
y2 = 1/2 (4 +6) = 5
обратная замена переменной на выражение
y1 = (3x^2-4) = -1
3x^2-4 = -1
3x^2 = 3
x^2 = 1;
x = -/+1
x1 = -1
x2 = 1
y2 = (3x^2-4) = 5
3x^2-4 = 5
3x^2 = 9
x^2 = 3;
x = -/+ √3
x3 = - √3
x4 = √3
ответ x = {- √3; -1; 1; √3}
Интересные вопросы
Предмет: Физкультура и спорт,
автор: dominikaddd
Предмет: Французский язык,
автор: TerenyaStepan
Предмет: Русский язык,
автор: innazakharyan
Предмет: Математика,
автор: 12021982