Предмет: Алгебра,
автор: Petroff
Найдите пятый член геометрической прогрессии, состоящей из восьми членов, если сумма её членов с четными номерами равна 1360, а с нечетными 680
Ответы
Автор ответа:
0
a первый член q знаменатель
нечетные члены прогрессии a+aq^2+aq^4+aq^6=680
четные члены прогрессии aq+aq^3+aq^5+aq^7=q(a+aq^2+aq^4+aq^6)=q*680=1360 => q=2
подставив в любое из уровнений найдем а=8
пятый член равен a*q^4=8*2^4=128
Интересные вопросы
Предмет: Русский язык,
автор: tamerlansuperman08
Предмет: Алгебра,
автор: Marzhan1983
Предмет: Математика,
автор: Аноним
Предмет: Литература,
автор: romashkina
Предмет: Химия,
автор: MURMURNATA