Предмет: Математика,
автор: vladuslavgotv
розв'язати задачу......
Приложения:

Ответы
Автор ответа:
0
Прискорення \( a(t) \) визначається як похідна другого порядку від функції положення \( S(t) \) за відношенням \( a(t) = \frac{d^2S}{dt^2} \).
У даному випадку функція положення \( S(t) = 7t - 8t + 4 \), отже, шукана похідна другого порядку є нулем.
Отже, прискорення \( a(t) \) рівне нулю для будь-якого моменту часу \( t \) в даному випадку. Немає моменту часу, коли прискорення буде дорівнювати 1 м/с², враховуючи задану функцію положення.
У даному випадку функція положення \( S(t) = 7t - 8t + 4 \), отже, шукана похідна другого порядку є нулем.
Отже, прискорення \( a(t) \) рівне нулю для будь-якого моменту часу \( t \) в даному випадку. Немає моменту часу, коли прискорення буде дорівнювати 1 м/с², враховуючи задану функцію положення.
Интересные вопросы
Предмет: Українська література,
автор: vladariznik9
Предмет: Литература,
автор: rinaa97
Предмет: Українська мова,
автор: qwerty42766136
Предмет: Математика,
автор: ranokabilzonova
Предмет: Алгебра,
автор: sonyaplay705