Предмет: Геометрия,
автор: dianapolischukua
2. У трикутнику BCD < B = 40°, < C =110°, точка О- центр описаного кола.Знайти < BOD,< COD, <BOD. Дуже терміново!!!!
Ответы
Автор ответа:
0
Ответ:
У трикутнику BCD, де \( \angle B = 40^\circ \) та \( \angle C = 110^\circ \), ми можемо знайти третій кут:
\[ \angle D = 180^\circ - \angle B - \angle C = 180^\circ - 40^\circ - 110^\circ = 30^\circ \]
Тепер, оскільки точка \( O \) є центром описаного кола, кут \( \angle BOD \) буде вдвічі меншим за відповідний центральний кут \( \angle BCD \), тобто:
\[ \angle BOD = \frac{1}{2} \cdot \angle D = \frac{1}{2} \cdot 30^\circ = 15^\circ \]
Аналогічно, кут \( \angle COD \) також буде вдвічі меншим за центральний кут \( \angle BCD \):
\[ \angle COD = \frac{1}{2} \cdot \angle C = \frac{1}{2} \cdot 110^\circ = 55^\circ \]
Отже, відповіді:
\[ \angle BOD = 15^\circ, \quad \angle COD = 55^\circ, \quad \angle BOC = 110^\circ \]
dianapolischukua:
Якась фігня
Интересные вопросы
Предмет: Математика,
автор: grenishenmaks
Предмет: Биология,
автор: lodartmabel
Предмет: Математика,
автор: darvisarina
Предмет: История,
автор: kkovalev370
Предмет: Алгебра,
автор: varlamovnv