Предмет: Геометрия,
автор: nekrasovas864
ОЧЕНЬ СРОЧНО ПРОШУ !!!!
З точки до площини проведено дві похилі. Довжина однієї з них – 8 см, а її проекції - 2√15 см. Кут між похилими дорівнює 60°, а відстань між основами похилих – 7 см. Знайдіть довжину проекції другої похилої.
( умова. русунок, ПОВНИЙ розв'язок прикріпити )
Ответы
Автор ответа:
0
Для розв'язання цієї задачі використаємо геометричні зв'язки між трикутниками та їх проекціями.
Позначимо довжину другої похилої як b, а її проекцію на площину як c. Відомо, що кут між похилими дорівнює 60°, а відстань між основами похилих – 7 см.
Тепер ми можемо скористатися формулою для проекцій трикутників: проекція = довжина * cos(кут). Таким чином, для першої похилої маємо:
2√15 = 8 * cos(60°)
Розв'язавши це рівняння, отримаємо значення cos(60°). Після цього ми можемо використати цей результат для знаходження проекції другої похилої:
c = b * cos(60°)
Таким чином, ми можемо знайти значення проекції другої похилої.
Интересные вопросы
Предмет: Английский язык,
автор: 4378960Billie
Предмет: Математика,
автор: kolbaevanarbek2007
Предмет: Математика,
автор: kiralobanova09
Предмет: Литература,
автор: sofiyaovchinnikova20
Предмет: География,
автор: amaliaadygezalova