Предмет: Математика, автор: hateme

f(x)=x^3-6x^2-15x найдите точки экстремума функции

 

 

х^3 я так пишу х (в квадрате)

Ответы

Автор ответа: AssignFile
0
f(x) = x^3 - 6x^2 - 15x
Найдём первую производную, приравняем её нулю и найдём стационарные точки..

f'(x) = 3x^2 - 12x - 15 = 0 \  \ x_{1,2} =  frac{6 pm  sqrt{6^2-3*(-15)} }{3} =  frac{6 pm 9}{3}  \  \ x_1 = -1 \ x_2 = 5

Найдём вторую производную. Если вторая производная в стационарной точке больше нуля, то это в этой точке минимум; если меньше нуля - максимум.

f''(x) = 6x - 12 \  \ f''(-1) = 6*(-1) - 12 = -18  textless   0 ;;;; = textgreater   ;;;; max \  \ f''(5) = 6*5 - 12 = 18  textgreater   0 ;;;; = textgreater   ;;;; min

Итак, экстремумами являются точки х = -1 и х = 5, причем, в точке х = -1 максимум, а в точке х = 5 минимум.
Интересные вопросы
Предмет: Другие предметы, автор: gajnovevgenij
Предмет: История, автор: anvuwka