Предмет: Алгебра,
автор: lele4kablin
Найдите все значения p, при которых уравнение 4sin 3 x = p + 7 cos 2 x не имеет корней.
Ответы
Автор ответа:
0
4 sin3x - 7cos2x =p
оценим выражение 4 sin3x. -1<=sin3x<=1, умножим на 4, -4<=sin3x<=4
оценим выражение 7 cos2x. -1<=cos2x<=1, умножим на -7, -7<=-7cos2x<=7
сложим почленно полученные двойные неравенства:
-11<= sin3x - 7cos2x <= 11
Значит, если p принадлежит отрезку [-1; +11], то уравнение имеет решение.
Ответ: р принадлежит интервалам (-беск; -11) и (11; +беск)
Интересные вопросы
Предмет: Українська мова,
автор: kris1111115
Предмет: Русский язык,
автор: rummadina
Предмет: Алгебра,
автор: nastya9999999999944
Предмет: Алгебра,
автор: Valya9999