Предмет: Геометрия,
автор: Dudh
Найдите радиус окружности, вписанной в прямоугольный треугольник, если известны радиусы
и
окружностей, вписанных в два треугольника, на которые высота, проведенная из вершины прямого угла, делит этот треугольник.
Ответы
Автор ответа:
0
Ну, вот треугольник ABC, С - прямой угол; CH - высота, оба треугольника ACH и BCH - подобны ABC;
AB = c; AC = c*sin(α); BC = c*cos(α); α = угол ABC;
то есть sin(α) и cos(α) - коэффициенты подобия (то есть отношение соответственных сторон треугольников ACH и ABC равно sin(α), отношение соответственных сторон треугольников BCH и ABC равно cos(α))
Ясно, что и радиусы вписанных окружностей связаны той же пропорцией (а почему?)
r1 = r*sin(α); r2 = r*cos(α);
откуда
r^2 = (r1)^2 + (r2)^2;
Есть любопытное следствие. Если O, O1, O2 - центры этих трех окружностей, то OC = O1O2; :)))) а вот докажите :))))
AB = c; AC = c*sin(α); BC = c*cos(α); α = угол ABC;
то есть sin(α) и cos(α) - коэффициенты подобия (то есть отношение соответственных сторон треугольников ACH и ABC равно sin(α), отношение соответственных сторон треугольников BCH и ABC равно cos(α))
Ясно, что и радиусы вписанных окружностей связаны той же пропорцией (а почему?)
r1 = r*sin(α); r2 = r*cos(α);
откуда
r^2 = (r1)^2 + (r2)^2;
Есть любопытное следствие. Если O, O1, O2 - центры этих трех окружностей, то OC = O1O2; :)))) а вот докажите :))))
Интересные вопросы
Предмет: Информатика,
автор: tvddjdbe
Предмет: Английский язык,
автор: Аноним
Предмет: Қазақ тiлi,
автор: anyadihs
Предмет: Математика,
автор: Аноним