Предмет: Геометрия,
автор: rujavl
как найти площадь трапеции зная обе её диагонали и среднюю линию
Ответы
Автор ответа:
0
Сделаем рисунок трапеции ABCD (BC||AD), проведём в ней диагонали AC и BD. (Рисунок простой, каждый сможет сделать его)
Через вершину С проведём параллельно диагонали ВD прямую до пересечения с продолжением АD в точке Е. Обратим внимание на то, что четырехугольник ВСЕD - параллелограмм. ( Если две стороны четырехугольника равны и параллельны - этот четырехугольник - параллелограмм).
Следовательно, ВС=DЕ, и АЕ равно сумме оснований.
Опустим высоту СН на АD/
Площадь треугольника АСЕ равна СН*(АD+DЕ):2
Но площадь трапеции также равна СН*(АD+DЕ):2 .
Площадь трапеции равна произведению ее высоты на полусумму оснований. )
Высота СН для треугольника и трапеции - общая, а
(АD+DЕ):2 - есть полусумма оснований=средняя линия трапеции.и АЕ равна сумме оснований, т.е средняя линия, умноженная на 2.
Итак, зная диагонали трапеции и ее среднюю линию, можно найти ее площадь по формуле Герона. Это свойство трапеции желательно запомнить.
----
[email protected]
Через вершину С проведём параллельно диагонали ВD прямую до пересечения с продолжением АD в точке Е. Обратим внимание на то, что четырехугольник ВСЕD - параллелограмм. ( Если две стороны четырехугольника равны и параллельны - этот четырехугольник - параллелограмм).
Следовательно, ВС=DЕ, и АЕ равно сумме оснований.
Опустим высоту СН на АD/
Площадь треугольника АСЕ равна СН*(АD+DЕ):2
Но площадь трапеции также равна СН*(АD+DЕ):2 .
Площадь трапеции равна произведению ее высоты на полусумму оснований. )
Высота СН для треугольника и трапеции - общая, а
(АD+DЕ):2 - есть полусумма оснований=средняя линия трапеции.и АЕ равна сумме оснований, т.е средняя линия, умноженная на 2.
Итак, зная диагонали трапеции и ее среднюю линию, можно найти ее площадь по формуле Герона. Это свойство трапеции желательно запомнить.
----
[email protected]
Интересные вопросы
Предмет: Окружающий мир,
автор: savchukanas
Предмет: Українська мова,
автор: karinessa68
Предмет: Українська мова,
автор: natasapostovituk1
Предмет: Математика,
автор: Armeniko