Предмет: Геометрия,
автор: ksusyas
Я совсем наглая, но всё ещё прошу вашей помощи!
Докажите, что биссектриса угла А треугольника АВС проходит через точку пересечения прямых, содержащих биссектрисы внешних углов при вершинах В и С.
Ответы
Автор ответа:
0
Опустим перпендикуляры OX OV OC1.
Углы XBO=OBС1 тк углы X=C1=90. ТО и углы XOB=BOC1 (в соображениях суммы углов треугольника)
ТО треугольники XOB и BOC1 равны по стороне и 2 прилежащим углам. То OX=OC1. Ну и в силу симметрии рассуждений по той же причине равны треугольники OC1C и OCV . OC1=OV
Но тогда выходит что: OX=OV.
Откуда прямоугольные треугольники XOA и VOA равны по катету и общей гипотенузе AO.
То углы: XAO=VAO. ТО есть AO-биссектриса угла A. Другими словами биссектриса угла A проходит через точку пересечения биссектрис других внешних углов.
ЧТД
Углы XBO=OBС1 тк углы X=C1=90. ТО и углы XOB=BOC1 (в соображениях суммы углов треугольника)
ТО треугольники XOB и BOC1 равны по стороне и 2 прилежащим углам. То OX=OC1. Ну и в силу симметрии рассуждений по той же причине равны треугольники OC1C и OCV . OC1=OV
Но тогда выходит что: OX=OV.
Откуда прямоугольные треугольники XOA и VOA равны по катету и общей гипотенузе AO.
То углы: XAO=VAO. ТО есть AO-биссектриса угла A. Другими словами биссектриса угла A проходит через точку пересечения биссектрис других внешних углов.
ЧТД
Приложения:

Интересные вопросы
Предмет: Обществознание,
автор: isaevvnik3
Предмет: Русский язык,
автор: Аноним
Предмет: Биология,
автор: evgenyakochmar
Предмет: Математика,
автор: tanchalima
Предмет: История,
автор: yanahabina