Предмет: Алгебра,
автор: nastya32544
Определите промежутки выпуклости вверх (вниз) графика функции y=5x - sin2x. Пожалуйста!
Ответы
Автор ответа:
0
y = 5*x-sin(2*x)
1. Находим интервалы возрастания и убывания.
Первая производная равна:.
f'(x) = -2cos(2x)+5
Находим нули функции. Для этого приравниваем производную к нулю
-2cos(2x)+5 = 0
Для данного уравнения корней нет.
2. Находим интервалы выпуклости и вогнутости функции.
Вторая производная равна:
f''(x) = 4sin(2x)
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
4sin(2x) = 0
Откуда точки перегиба:
x1 = 0
На интервале (-∞ ;0) f''(x) < 0, функция выпукла
На интервале (0; +∞) f''(x) > 0, функция вогнута
1. Находим интервалы возрастания и убывания.
Первая производная равна:.
f'(x) = -2cos(2x)+5
Находим нули функции. Для этого приравниваем производную к нулю
-2cos(2x)+5 = 0
Для данного уравнения корней нет.
2. Находим интервалы выпуклости и вогнутости функции.
Вторая производная равна:
f''(x) = 4sin(2x)
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
4sin(2x) = 0
Откуда точки перегиба:
x1 = 0
На интервале (-∞ ;0) f''(x) < 0, функция выпукла
На интервале (0; +∞) f''(x) > 0, функция вогнута
Интересные вопросы
Предмет: Математика,
автор: burmunduk
Предмет: Математика,
автор: Аноним
Предмет: Другие предметы,
автор: batyrgalievamina
Предмет: Геометрия,
автор: ditimchencko
Предмет: Алгебра,
автор: sultan0505626