Предмет: Алгебра,
автор: Ramazan00505
Решите уравнение.5cos(в квадрате)x-11cosx-12>или равно 0.
Ответы
Автор ответа:
0
Левую часть можно разложить на множители:
5(cos x + 0.8)(cos x - 3) ≥ 0
Далее по свойству косинуса видим, что разность (cos x - 3) всегда отрицательна и исключаем ее из неравенства, меняя его знак:
cos x + 0.8 ≤ 0
cos x ≤ -0.8
Далее решение можно найти с помощью единичной окружности. Но я ее здесь не нарисую. Имеем ответ:
[π - arccos 0.8 + 2πk; π + arccos 0.8 + 2πk], k∈Z.
5(cos x + 0.8)(cos x - 3) ≥ 0
Далее по свойству косинуса видим, что разность (cos x - 3) всегда отрицательна и исключаем ее из неравенства, меняя его знак:
cos x + 0.8 ≤ 0
cos x ≤ -0.8
Далее решение можно найти с помощью единичной окружности. Но я ее здесь не нарисую. Имеем ответ:
[π - arccos 0.8 + 2πk; π + arccos 0.8 + 2πk], k∈Z.
Интересные вопросы
Предмет: Английский язык,
автор: miroslavmelnik84
Предмет: Литература,
автор: pehterevao31
Предмет: Алгебра,
автор: nazarbekovaa
Предмет: География,
автор: Аноним
Предмет: География,
автор: ShitHope