Предмет: Геометрия,
автор: Лёлька17x
основание прямой призмы является ромб с углом 60. если диагональ боковой грани призмы, равная 4а , составляет с боковым ребром угол 30 , то объём этой призмы равен? можно с рисунком
Ответы
Автор ответа:
0
Высота призмы (ее боковое ребро) равно а, тк лежит против угла в 30 гр в прямоугольном треугольнике.
Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3)
Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр
Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2
Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2
Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2
sqrt - квадратный корень, ^ - возведение в квадрат.
Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3)
Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр
Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2
Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2
Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2
sqrt - квадратный корень, ^ - возведение в квадрат.
Интересные вопросы
Предмет: Математика,
автор: aurora1998serega
Предмет: Қазақ тiлi,
автор: ashatamandosov1
Предмет: Українська мова,
автор: 27361682
Предмет: Литература,
автор: Аноним
Предмет: Литература,
автор: grev19