Предмет: Алгебра,
автор: TMuhriddin
Нужна помощь с задачей 15
Приложения:

Ответы
Автор ответа:
1
обозначим угол α = arcctg (2 + √3); β = arcctg √3;
arcctg (2 + √3) + arcctg √3 = α + β
ctg α = (2 + √3) и ctg β = √3
ctg (α + β) = (ctg α · ctg β - 1)/(ctg α + ctg β) =
= ((2 + √3)·√3 - 1)/(2 + √3 + √3) =
= (2√3 + 3 - 1)/ (2 + 2√3) =
= (2 + 2√3)/(2 + 2√3) = 1
α + β = arcctg 1
α + β = π/4
Ответ А) π/4
Автор ответа:
1
arcctg(2+√3)+arcctg√3=?
ctg(a+b)=(ctga•ctgb-1)/(ctga+ctgb)
ctg(arcctg(2+√3)+arcctg√3)=
((2+√3)•√3-1)/(2+√3+√3)=
(2√3+3-1)/(2+2√3)=
=(2√3+2)/(2+2√3)=1
arcctg(2+√3)+arcctg√3=arcctg1=π/4
ctg(a+b)=(ctga•ctgb-1)/(ctga+ctgb)
ctg(arcctg(2+√3)+arcctg√3)=
((2+√3)•√3-1)/(2+√3+√3)=
(2√3+3-1)/(2+2√3)=
=(2√3+2)/(2+2√3)=1
arcctg(2+√3)+arcctg√3=arcctg1=π/4
yugolovin:
Ответ, конечно, правильный, но нет доказательства, что угол именно пи/4, а не, скажем, 3пи/4 - ведь котангенсы у них одинаковые. То же замечание ко второму ответу.
Интересные вопросы
Предмет: Обществознание,
автор: alimamuhamedia
Предмет: Математика,
автор: natasha5alekseeva
Предмет: Алгебра,
автор: Аноним
Предмет: Геометрия,
автор: Дмитрий11111111121
Предмет: Математика,
автор: 5173007286