Предмет: Математика, автор: jekakrutov2016

решите примеры пожалуйста, я вас умоляю кто нибуть помогите!!

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1.

y = 2 {x}^{2}  - 4x \\ x_0 = 1

f(x) = y(x_0) + y'(x_0)(x - x_0)

y(0) = 2 - 4 =  - 2

y' = 4x - 4

y'(1) = 4 - 4 = 0

f(x) =  - 2 + 0 \times (x - 1) =  - 2

- уравнение касательной

2.

s(t) =  {t}^{3} + 5 t {}^{2}  - 3 \\ t = 2

v(t) = s'(t) =  3 {t}^{2} + 10 t - 3

v(2) = 3 \times 4  + 20  - 3 = 32 - 3 = 29

a(t) = v'(t) = 6t + 10 \\ a(2) = 12 + 10 = 22

3.

а)

y '=  -  \sin(x)  - 5 {x}^{ - 6}  =  -  \sin(x)  -  \frac{5}{ {x}^{6} }  \\

б)

y' =  -  \frac{1}{ \sin {}^{2} (x) }  -  \frac{1}{2}  {x}^{ -  \frac{1}{2} }  =  \\  =  -  \frac{1}{ \sin {}^{2} (x) }  -  \frac{1}{2 \sqrt{x} }

4.

y' =  ({x}^{2} ) '\times  \sin(x) + ( \sin(x)) ' \times  {x}^{2}  =  \\  = 2x \sin(x)  +  {x}^{2}  \cos(x)  \\  \\ y'( \frac{\pi}{3} ) =  \frac{2\pi}{3}  \sin( \frac{\pi}{3} )  +  \frac{ {\pi}^{2} }{9}  \cos( \frac{\pi}{3} )  =  \\  =  \frac{2\pi}{3}  \times  \frac{ \sqrt{3} }{2}  +  \frac{ {\pi}^{2} }{9}  \times  \frac{1}{2}  =  \\  =  \frac{ \sqrt{3} \pi}{3}  +  \frac{ {\pi}^{2} }{18}

5.

f'(x) =  \frac{( {x}^{2}   + 15)'(x + 1) - (x + 1)'( {x}^{2}  + 15)}{ {(x + 1)}^{2} }  =  \\  =  \frac{2x(x + 1) - ( {x}^{2} + 15) }{ {(x + 1)}^{2} }  =  \frac{2 {x}^{2}  + 2x -  {x}^{2}  - 15}{ {(x + 1)}^{2} }  =  \\  =  \frac{ {x}^{2}  + 2x - 15}{ {(x + 1)}^{2} }  \\  \\  {x}^{2}  + 2x - 15 =(x + 5)(x - 3)  \\ D= 4 + 60 = 64 \\ x_1 =  \frac{ - 2 + 8}{2}  = 3 \\ x_2 =  - 5 \\  \\ f(x) =  \frac{( x  +  5)(x - 3)}{ {(x + 1)}^{2} }

f'(x) = 0 \\  \\  \frac{(x + 5)(x - 3)}{ {(x + 1)}^{2} }  = 0 \\ x_1 =  - 5 \\ x_2 = 3 \\ x\ne - 1

f'(x) > 0 \\  \frac{(x + 5)(x - 3)}{ {(x  + 1)}^{2} }  > 0 \\   +  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - \:   \:  \:  \: \:  \:  \:   \:  \:  \:  \:  -  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  + \\  -  -( - 5)  - -   ( - 1)-  -3  -  >  \\ x\in( -  \infty;  - 5)U( 3 ;+  \infty )

6.

а)

y =  \frac{1}{(5x + 1) {}^{3} }  =  {(5x + 1)}^{ - 3}  \\

y' =  - 3 {(5x + 1)}^{ - 4}  \times (5x + 1) '=   \\  = \frac{ - 3}{ {(5x + 1)}^{4} }  \times  \times 5 =  -  \frac{15}{ {(5x + 1)}^{4} }

б)

y =  \sqrt{ \sin(3x) }  = ( \sin(3x))  {}^{ \frac{1}{3} }

y' =  \frac{1}{3} ( \sin(3x))  {}^{ -  \frac{2}{3} }  \times ( \sin(3x))  '\times (3x) '=  \\  =  \frac{1}{3 \sqrt[3]{ \sin {}^{2} (3x) } }  \times  \cos(3x)   \times 3 =  \\  =  \frac{ \cos(3x) }{ \sqrt[3]{ \sin {}^{2} (3x) } }


Ternov21: https://znanija.com/task/44292141?utm_source=android&utm_medium=share&utm_campaign=question
Ternov21: Помогите
Интересные вопросы
Предмет: Русский язык, автор: окружайка2